Meixner–Pollaczek polynomials

In mathematics, the Meixner–Pollaczek polynomials are a family of orthogonal polynomials P(λ)
n
(x,φ) introduced by Meixner (1934), which up to elementary changes of variables are the same as the Pollaczek polynomials Pλ
n
(x,a,b) rediscovered by Pollaczek (1949) in the case λ=1/2, and later generalized by him.

They are defined by

P_n^{(\lambda)}(x;\phi) = \frac{(2\lambda)_n}{n!}e^{in\phi}{}_2F_1(-n,\lambda%2Bix;2\lambda;1-e^{2i\phi})
P_n^{\lambda}(\cos \phi;a,b) = \frac{(2\lambda)_n}{n!}e^{in\phi}{}_2F_1(-n,\lambda%2Bi(a\cos \phi%2Bb)/\sin \phi;2\lambda;1-e^{2i\phi})

See also

References